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Preface 5 December 1974

This report 1s an analysis of several signal generation
algorithms which were proposed and in some cases used in the
Acoustic Signal Generation System (ASGS), a multi-minicomputer
simulation facility developed at NAVSURFWPNCEN, In addition
to deriving the spectrum of the output for each of the algorithms
and comparing their performance, practical aspects of implementation
for each are discussed., The report will be of interest to those
concerned with the design of digital signal generation systems.

The research reported herein was partially funded under
the Digital Acoustic Simulator System, Task Number A370-370K/W2144-170.

In its original form, this paper was submitted to the Graduate
Faculty of the University of Maryland in partial fulfillment of
the requirements for the degree of Doctor of Philosophy in
Electrical Engineering.

ROBERT WILLIAMSON II
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CHAPTER I
INTRODUCTION

The 'synthesis of specific analog signals has been

accomplished by analog systems for some time. Difficulty

in control over such systems, the inherent lack of

uniformity and reproducibility in their operation, and
other factors such as reliability problems have, however,
limited the degree of sophistication which can be

achieved in analog signal synthesis. JIn addition, there

.18 a lack of multiplexing capability, so that many parallel

replicas of a circuit are generally required. Hybrid
systems employing parametrically programmable analog
devices controlled by a computer aretable to surmount
some of the difficulties of purely analog systems, but
still have problems in reliability and reproducibility
of results,

Although sifnal synthesis by an all digital system
has been possible for a decade or more, the raw computing
power necessary to perform a reasonably sophisticated
job in real time has only recently become economically
practical. Non real time techniques are more often than
not impractical from a user's time standpoint (only
in rare cases 1is one willing to spend days generating
minutes of signal or less), or completely inapplicable

for on line requirements. The recent availability of
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inexpensive, very fast and very reliable digital
hardware, ‘together with recent advances in digital signal
processing techniques such as the FFT algorithm, have
resulted in the feasibility of very sophisticated signal
synthesis by all digital systems. By utilizing pseudo-
random sequence generators to create the "random"
components of signals, completely controllable and
reproducible results may be had.

As might be expected, the increased versatility and
reliability that is achievable with an all digital
system is not completely free from encumbrances. ‘Since
all representations of time functions and/or of
spectral functions must be discrete and of finite
duration, aliasing problems are inherent in every
.operation. In addition, various "clever" implementation
tlgoriéhms that appear on the surface to be econcamically
desirable usually compound the sampled data system
problems, and leave considerable doubt as to whether
the resultant s;nthesized signal has the desired
characteristics., It is these latter considerations to
which this paper is addressed.

In general, signals may have both transient components
(finite energy) and steady state components (finite power).
This paper is concerned with the synthesis of steady

state components, and in particular those that are

either composed of one or more discrete frequency eleménts,
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or are randof processes characterized by a power density
spectrum which varies relatively slowly in frequency.
These two categories will be referred to as narrowband
and broadband components, respectively. It will be
assumed that durling synthesis of narrowband components,
the specified frequency may be randomly perturbed by

a small percentage to generate components with narrow
but non=zero bandwidths.

The signals to be synthesized are divided into three
grcups., Chapter 2 discustses the generation of the
broadband signals chargéterized by a finite, reasonably
wéll behaved power spectrel density. Chapter 3 considers
the generation of signals having discrete or quasi-
discrete spectra, and in particular the generation of
sums of such signals by inverse FFT techniques. As an
alternative, Chapter U4 presents a time'domain technique
for sums of single frequency signals whose frequencies
are harmonically related; that is, all signal frequencies
in a set are integer multiples of some fundamental
frequency ro. In all cases the objective is to develop
and evaluate the performance of practical, economically
implementable algorithms rather than to concentrate on
determining algorithms that are optimum from a purely
mathematical viewpoint.

The glossary on page vi summarizes the symbols

used in the thesis. In addition, use is made of the
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"sinc" function, defined by

sin wu
T

sinc u =
since the form (sinwru)/nu is encountered very frequently
in "blocked" data (i.e., FFT) processing. A similar
form also encountered quite often is (sinnu)/(sinﬁu),
which will be designated ip this paper as the "sind" function;

« L sinwru

sin%u
which is shown in Appendix A to result from a finite
sum of exponentials
N-Z-l ot -§7 (v
e

= N-e siqu(u) 1.3
n=0

Apﬁendix B derives a useful pair of relations between the
sind function and infinite sums of regularly spaced sinc
functions.

It will be assumed at the outset that the functions
dealt with in the text are sufficiently well-behaved
to permit the interchange of summation and integration
operations as required, and other minor mathematical

liberties which are taken on occaslion.

- v <
o et e e S
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CHAPTER II

BROADBAND SIGNAL S¥NTHESIS

A. General :Considerations.

The problem cc¢nsidered in ‘this chapter is the
generation or synthesis by a digital system of random
signals having a power spectral density PSD that is
controllable over a band of interest W from -B to

B Hertz. Since a completely arbitrary control

‘capability would imply an infinite number of parameters

to specify, it will be assumed that the desired degree
of detail will be commensurate with a set of N or less

control parameters Yk, k =0, ..oy N-1, The objective

‘18 the determination of a signal generation aigorithm

defined on the Y, such that the PSD of the generated
signal y(t) over the required band is a reasonably
well behaved fuﬁction heving the desired overall form.
As an example, the signel generation algorithm could
be passing white Gaussian noise through a genqnal
digital filter of order N, with the Yk determining
the polé/zero locations of the filter.

A further assumption is made that the desired first
order statistics of the output signal be Gaussian, This
is a normal requirement for most applications, since

natural processes tend to exhibit Gaussian statistics.
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For this reason it will also be -assumed that the digital
synthesizer system hardware 1s capable of generating
sanmples from a Gaussian process efficiently. Actually,
for most practical applications, an approximation to
the Gaussian is adequate, such as the sum of 4 or more
independent samples from a uniform process.

If white Gaussian noise (WGN) is all that is required
for the output signal (power density spectrum equals
a constant across the band of dinterest), then the most
straightforward and efficient method of generating
the desired signal is to output samples directly from

‘the Gaussian generator, with at most a multiplication

by a scale factor to adjust the output power level.

Siuce the Fourler transform of a white Gaussian process
is also a white Gaussian process (exhibiting the proper
symmetéies if the input 1is real), specification of the
signal in the frequency domain (to be followed by an
inverse ‘Fourier transform) requires the same number of
independent Gau;sian samples as in the time domain. Thus
the computational effort required to perform 'the inverse
Fourler transform 1s superfluous.

If, on the other hand, a Gaussian signal with a
colored spectrum is desired, both time domain techniques
utilizing recursive or convolutional filters and frequency
domain technlques utilizing the discrete Fourler transform

have their application. If a relatively simple spectral
shaping 1s required, passing the white Gaussian (time)
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samples obtained directly from the generator through a

time domain filter may be adequate. This approach, however,
has two rather severe limitations. The computational ‘load
exceeds the equivalent FFT implementation load if the filter
function required has more than about 5 to 10 poles or
zefoes. Worse yet, design of a time domain filter to
implement a given frequency domain specification is not
straightforward, and may become impractical if the

spectral shaping must be varied in real time. The time-
domain filtering approach is practical then only if very
simple shaping is desired, or most profitably, if the
desired shaping is naturally specified in terms of a few
recursive filters (high, low or bandpass functions with
rolloff in multiples of 6 db/oct.) Computational load

for conyolutional filters becomes excessiQe beyond a few
zeroes, so that the_requiréd convolution is often per-
formed by transforming to the frequency domain,

multiplying, and, transforming back. This -of course

becomes the same thing as frequency domain filtering.

If considerable detail in the spectral power density is
required, frequency domain filtering techniques utilizing
an FFT processor become quite attractive. The desired power
spectral density can be gpecified at N equally spaced poinis
from -B to B in the frequency domain, or if an impulse
response or autocorrelation function is given, the equivalent

spectral weighting function can be easily obtained by
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a forward transform: Once some threshold value of N
has been passed and the decision to use‘FFT“techniques
has been made, the computational load is only weakly"
dependent on degree of detail implemented. The major
disadvantage of the FFT methods, though, is the fact
that since processing must ke done in blocks rather
large amounts of memory are required. The memory
requirements are, in fact, proportional to the degree

of detail required, i.e., the parameter N,
B. Frequency Domain Filtering Algorithm

The most straightforward approach to synthesis
of broadband signals by FFT is to implement directly
the frequency filtering diagram shown in Figure 2.1,
First white Gaussian noise is generated in the time
domain.as before. The forward transform of a block
of N samples is compuﬁed, yielding N/2 single-sided
complex frequengy coefficients, These are then
multiplied by the corresponding coefficients of the
filter weighting function. The inverse FFT of the

result yields the desired filtered time samples.

However, to avoid erroneous results due to circular
convolution, the actual filtering implementation must
incorporate either of the "“overlap-save" or the "overlap-

add" computational techniques.l

In either of these
schemes, the desired filter impulse response of,

for example, N non~zero samples must be augmented by
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a block of K zeroes to produce a total block size of

M= N+ K time samples. The forward transform of this
function produces the spectral filter function desired
having M/2 singlé-sided complex coefficients. Input

data in blocks of M samples (or N samples plus K zeroes
for the overlap-add version) are then forward transformed
to produce M/2 spectral values. After multiplication

of the input spectra block by the augmented filter
welghting function and inverse transforming, K samples

of the output are free of circular convolution error.

The price toc be paid, however, is increased memory

‘size by K words, .and a required overlapping of the input

blocks by N samples.

The complete process is illustrated in Figure 2.2
for the overlap-save method. Note in 2.2b that to
specif& N parameters for the spectral detail (N/2
complex coefficients) a block size M = N + K must be
used in perform}ng the transforms. ¥For computational
efficlency, it would intuitively seem from 2.2a that
K should be considerably larger than N. However,
memory requirements- are directly increased by increasing
K, and from the memory standpoint K should be made as
small as possible. 1In addition, the computational
gains are almost non-existent for K much greater
than N, (due to the log factor in the (f-log M) FFT
load formula) and actually become losses for M more

than about 8N, Figure 2.3 illustrates the computational

10




NOLTR T4-215

X
. M = N+K SAMPLES FOR FIRST mANSl;ORM
g y( )“_\____K o 'ZJN:]
A TR
K -

M = N+K FOR SECOND .TRANSFORM, ETC
2,20 INPUT WAVEFORM BLOCKING, N SAMPLE OVERLAP

N [ -

o B dnom 4

W | | orr

Nézwl X W H'(K)

COMPLE \ K ZEROES ADDED M/2 =(N +K) 12
REAL COMPLEX

2.2b  DERIVATION OF REDUNDANT FILTER COEFFICIENTS

| FILTER COEFFICIENTS

M/2 COMPLEX

) FILTERED OUTPUT
—et FFT FFFT |  MREAL
INPUT INPUT FILTERED K VALID SAMPLES
BLOCKS SPECTRA SPECTRA N SAMPLES DISCARDED
M REAL M/2 COMPLEX

2.2c  OVERLAP-SAVE BLOCK DIAGRAM

FIG, 2.2 OVERLAP-SAVE FILTER ALGORITHM

11




NOLTR. 7T4-215 ’

DLt i SRR O o N b s i ot e S a{{x TRV

MEMORY,

LOAD

RATIO

100
3
1 r
8
2 7+
3 " 5r
E
. 5F
3 ] o
3 I
i 2}
2 1+
; 34 L Lo 1
F 1 2 3 4
: O RELATIVE MEMORY SIZE
E 3 RELATIVE COMPUTATIONAL LOAD
FIG. 2.3 COMPARISON OF MEMORY REQUIRED AND COMPUTATIONAL LOAD
VS MFOR OVERLAP-SAVE ALGOMTHM

2
3
l".
5
E
%
E
o
=3
-
4

12




NOLTR T74-215

load and memory required as a function of M for N = 32
and N = 512, For each plot, "1" is tlie requirement
for the base transform (32, 512). In both cases M = 2N
appears to be a good compromise between FFT load and
memory required.

Assume that the power spectral density (PSD) #(f) has
been specified at N-1 equally spaced points covering
the band of interect W, i.e.,

o) = ¥, % k=41, o0, 0, o0, N291; 2.0

where N is assumed even, Yk-Y_k are real and positive, and

where fc, the resolution, is given by

fc = W/N 2.2

The Yk are then the magnitudes of the amplitude response
at the frequencigs

£, = kf, _ 2.3

The spectral response in the band of interest W
at frequencies lying between the rk is determined by
the particular synthesis algorithm employed to generate
the output time sequence Yo For the overlap-save filter
algorithm described ahove, assume that the Yk are used

directly as the N-1 non-zero spectral coefficients of

13
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the filter function, i.e.,

H

k = Yk; k = _N/2 + 1’ s e ey N/2 -1 2.&

where H—k = H:k = Yk since the Yk are real. The correspond-

ing time sequence is given by

»

N/2-1 1-2{,-’25 N/2-1 Eﬁ“_k-
h = ] H e = J Y

Y e s n=0 XX N-l
B elN/2 k=-N/2 ¥ oo
2.5

where Y—N/Z is assumed to be zero.

The filtering operation to be performed is then
the convolution of a function h(t) with the input function
§(t), with

-
®©

x(t) = I x, 6(t - mT) 2.6

MZ—w ~

where the x_ aresthe white Gaussian nolse samples, and

m
where

(t) sz'l ( )
h(t) = h 6(t - nT 2.7
n=-N/2 n 5

and Ts = ﬁ%: is the basic sample period of the system.
To determine the spectrum of h(t), consider a function

hp(t) which is periodic with period NTs = l/fc and is

N
s+ 20gd

A function which consists of a repeating or periodic

identically equal to h(t) over the interval [—gm

sequence of impulses has a spectrum that is also a

14
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periodic sequence of impulses, where the impulse spacing
in each domain is just the reciprocal of the repeat
interval in the other domain. The impulse values over
one repeat interval in each of the two domains are
related by the Discrete Fourier Transform (DFT)

modified by a scaling factor of T. Since by definition
the hn are the inverse DFT of the Hk, the spectrum of
hp(t) is given by

- N/2-1 1 t
B B 6(f - (emM)T) 2.8

(r) =

Hp m-zo kzLle 8
Thus the spectrum of hp(t) is sampled and periodic with
the Hk = Yk being proportional by l/N'r8 to the sample
values over one period Nf,. But h(t) is Just hp(t)

multiplied by a unit pulse of width NT, = #- .

¢
Therefore the spectrum of h(t) is Hp(r) convolved with

i% sinc r/rc, or

“  N/2-1 1 _
H(L) = 4 , —=— H_sinc[(f - (k+mN)f,)/f, ]
A 4 m--);- k=-N/2 Nlg ¢v e

2.9

Interchanging sums and rewriting slightly,

NT, N/2-1 -
HE) =gp> 1 B ] sinely~ - k - mN] 2.10
8 k=-N/2 m=e-w ¢

or, using Bl9,

15
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H(f) = Nfz-l

r
H sind, (4= - k) 2.11
ke-N/2 K NTS

Since the input f(t) is assumed to be white,
1ts PSD o_(f) is just some constant which can set to
unity for convenience. The PSD of the signal yxﬁt)
at the output of the filter is then

2
oyx(r) = o (f) -« [H(D)] 2.12
or
) N§2-1 ’ ; Lo 2
¢ _(£) = sind, (7= - k 2.13
yx k=-N/2 k N fc ‘

Over the positive spectrum from 0 to B Hert:z, Hk is

Just equal to Yk’ and the spectrumloftﬁk output over

the band of interest is given by 2.13. Thus the expected
value of the Specgpal magnitude of the signal generated
by the above convolution filtering algorithm passes
through the values Y, at the frequencies kf,, k = -N/2,
veey N/2 - 1 since sindN(u) = 0 for non-zero integral
values of u < N and exhibits sampling function
interpolation at points between the krc. Note, however,
that the interpolation includes contributions from the
replicas of the H outside the band of interest, and thus

results in the interpolation form sindy(u).

16
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C. Concatenated' Segment Algorithm

It would seem that, since the transform of a WGN

. ‘ time function is a WGN spectrum (reals and imaginarys
in the spectrum are all independent Gaussian random
variables), it would be possible to eliminate the input
forward transform and to generate the WGN spectrum
directly. The problem is that, although within each
block the N random variables are independent and
Gaussian in both domains, there is a required correlation
beyvcen blecks due to the N overlapped samples.
It would be necessary to generate the spectral random
variables such that the last N samples of the transform
of one are identical to the first N samples of the transform
of the next. It i1s not immediately obvious how to
.generate spectra with the required conétraint, since

the time domain is the "natural" domain for specifying

the phenomena desired.,

If circular convolution is completely ignored, the
computational load can be reduced from one forward plus
one inverse transform per output block multiplied by
some factor for overlap, to just an inverse transform
with no overlap. Assuming an overlap of two for the
fast convolution algorithm, this corresponds to a

. potential reduction factor of four in computational
loading. It 1s thus tempting to try to odbtain satis-
factory results by implementing the foliowing signal

generation algorithm,

17
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Let Hk, k=20,1, .o., N2 = 1 be the single-sided
spectral coefficients of a discrete filter weighting
function., Let a WGN spectrum be generated with N/2
cOmplex.single-sided frequency coefficients, ¥k’ where

the probability density of both the real part xﬁ and

the imaginary part Xi of xk is given by

2
P oK) =p (X)) = e

2.14
Xk X "

i.e., a zero-mean Gaussian process of variance o2 = %.
The N random variables X;, {i; k=0,1.,. N2, are
all independent. The magnitudes of the Xk are then

Rayleigh distributed

p (r) = 2re™™ 3 r > 0 2.15
!¥k| -

with mean r = /v /2 and mean square ;2 =1,

[ 4
The phase angles of Xk are uniformly distributed

over 2» radians:

Py (8) = 5%1 0 <6 <2n 2.16
“k

The signal generation algorithm consists of first
forming the single-sided spectrum
¥k = Hk'¥k; k = 0’ e N/2 - lo ‘2017

18
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Then an inverse Discrete Fourieér Transform (IDFT) is
performed on ‘the ¥k to produce the real time series:gn;
n=0, ... N~-1, The Yn become the sample values of the
output broadband process gi(t) fér an interval NT_, where
Ts is the basic system sample period as before. ?he
algorithm is repeated inderinitely with a new, .independent
‘set of %k's on each iteration. The tth iteration .generates
the P set or X's, X,,, from which the samples of y*(t)

for the interval (2-1/2)NT§ <t < (£+l/2)NTs‘are obtained.
Thus:
x ©  N/2-1
yr@)= 1§ 3 Ve 8(t - [EN+n]T ) 2,18
' - == n==N/2 -

where Ynt is the value of Yn generated on the Lth iteration.

Each segment of the output function generated in a
single iteration can be thought of as exactly one period
of a periodic, sampled function ¥p£(t)3 with sample period
’1‘s and fundamental period NTS. The spectrum of such a
function is also a éampled, reriodic function ¥p£(f),
with period £y = ,l/Ts and sample period fc = l/NTs.
Since th(t) and ¥p£(f) are related over one period of

each by the Discrete Fouriler Transform, sz(mfc) is just

1
equal to Y . Jor m = k + rN; m and r integers.
kL NTg ’
Thus

N§2—l
w k=-N/2

1

sz(r) = ﬁT; Yie §(f - [k + rNJrc)

®
~ PR

2.19 .
with Ykz being the Yk generated on the lth iteration.

19




AR R R R

R

A AT

L 2t rsaliony

TR BT

e i g A O S e

Fiad

NOLTR T4-215

The power density spectrum Qy (£) of the function
\ “Ypl
*
ypz(t) is just

: () g N§2-l E ¥ '2 SolkbeNIe ) 2.20
0 = e 2 - r .
.'yp‘C (NTS) k=N/2 pr=-e -kt c

The autocorrélation of the final output gx(t) can be ‘found
by averaging over f£ime the statistical autocorrelation
function ¢y(t,r). The latter is Just the autocorrelation
function of the member functions ¥p£ if £ + ¢« 1s still
in the same segment as t and zerc otherwise. ¢pr(T)
%s obtained by first taking “he ensemble average of
?ypl’ and then performing the Fourier transform.
Applying the expectation operator to 2.20, only the
gkt are affected and

1 N/2-1 = 5

by ()= v Y 6’(‘1”-Ek'+rN]f) 2.21
Ype (NT,) k=§N/2 rz-» k c i

since v

2

2y .
E(lgkzl ) = Yk 2.22

¥The interested reader can readily convince himself

of the validity of 2.20 by considering the Power
Spectrum represented by 2.19 and noting the independence
of the Ykz for all k and £.

20
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by definition. The time average of ¢y(t,r) is then Just
¢y () multiplied by the percentage of all possible

pl
times t that a delay of v still remains in the same

segment. The multiplying function is thus triangulaf

with a value of unity at the origin (average power
in yx(t) is same as average power in member functions)

and decreases linearly to zero at + the segment length

NTS. Thus
¢yp£(r)[l-N%;J; 0 < v < NI
¢y(r) = 0 |t] > NT_ 2.23
¢yp£(r)[1+;§r;]; -NT, <t <0

The output power.density spectrum is then the
convolution of °y (f) with the transform of the

p
triangular pulse, The latter is

P(f) = ;]-'2- sinc® ff— 2.24
[¢]

c

Convolving with 2.21, the PSD of the output is

(N‘I‘S)2 N/2-1 o

2 2, f
Y sinc® (=~ - k-rN
)2 =2 K r=z-°° o )

¢ _(0)=
y* (T

2.25

21
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or, using B24

¢ () = §/22-1 v,? sind’(F - k) 2.26

y ==N/2 c
Comparing 2.26 with 2.13, the PSD differ in that the
PSD of the convolution filter algorithm is of the form
"square of sum", whereas the segment function algorithm
yilelds the form "sum of squares". Since the sind
functions have zeroes at all the cell frequencies except
the source of each, both algorithms yield a PSD that
passes through the points lHkl2 at frequencies kf .
The difference exists only for those frequencies
lying between the kfc. The contributions to these
frequencles are due to a continuous impulse response
function for the convolution filter. This response
function is a sum of sind functions, but each is excited
by the same random process, and therefore the appearance
of the "coherent sum" form. On the other hand, however,
each segment output for the second approach is obtained
by summing a set of independent narrowband processes,
each with a spectrum of the form sindm(x) and as 1s
expected these contributions add incoherently to form
the final output. Hovever, since the stated requirement
vas to produce broadband noise with a PSD that is well-
behaved and continuous, and that passes through the points

IHk|2 at frequencies kf,, both algorithms appear to

qualify. Thus If the PSD is the scle criterion to be

22
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satisfied, a considerable savings in computational

load can be realized by implementing the simpler

VI TN

algorithn,

However, all is not well with the "short-cut"
approach. Each segment of the cutput function is
actually one period of a periodic waveform, and as

suich is continuous from or.e cycle to the next, or

equivalently, from the end to the beglinning. The next
segment generated in this manner is completely
independent of the first, and the value of the function

and its derivatives at the end points will have no

© an e e e ———

relationship to the corespronding values at the ends

of the adjacent segments. Thus the penalty for ignoring
the circular convolution protlem is a discontinuity

in the function and its derivatives every N output
samples., It is interesting to note that the first

order density function of the output y*(t)

(evaluated at the sample points) is independent of

4
position, i.e.,

1 52

e 2.27
/370°

pyx(y(nT )] = p;x(y) n
where the "approximately equal" becomes an equality if

the Ykl reals and imaginarys are truly Gaussian.

However, although the power spectrum of the generated

23
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signal is also as desired, the fact that the time
function is composed of statistically independent
segments 1s apparent in the second order density
function. Although the temporal autocorrelation

function of the output
. -
R(t) = [ y*(t) y“(t+r)at 2.28

(the transform of the PSD) has no indication of the

anamaly, the ensemble correlation function

o (t,1) = Efgx(togx(t+r)) 2.29

is noct independent of t and therefore is not equal to
R(t). Thus the qutput process is non-ergodic. The
practical implications depend on the application,

but in general the simple algorithm would not likely

be satisfactory 1f the output is to be fed into a

phase or transient senSitive processing system (such as

the human ear).

D. Overlapped Segment Algorithm
For applications in which the discontinuities in
the output signal are unacceptable, various compromise

algorithms are possible which require overlapping

output segments and therefore increased computational

24
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load, but which at least result in continuity of the
function. Consider again the overlap-add version of

the convolution filter algorithm (see reference (1),

MTLcoh g

. pP. 210) with an overlap of two, i.e., M = 2N. The

T N M NSNS My eIy AR IV THP SRR PN

5 filter impulse response and N points of the input
f waveform are both augmented by K=N zeroes. The spectra
5 % _ of the augmented functions have N complex coefficients

{ over the same band that the unaugmented functions

have N/2; the additional N/2 coefficients representing
spectral points halfway between the original points.
The new points represent interpolated values based

on the sindy(x) weighting intrinsic to the discrete

Fourier transform. Note that this implies that each

PR

interpolated value is obtained from a weighted average

P

of all N/2 of the original spectral coefficients.

It is obvious that performing this inteérpolation

s s i e AT s
- s ™

algorithm in the frequency domain would require

%

considerably more computation than the FFT of the
’

original input time function. (The filter response

o ity o r LA

only needs to be transformed once at setup, so 1t

is not a problem). However, it 1is possible to apply
other less sophisticated interpolation algorithms,

which in general result in an approximation to augmenting
the input with N zeroes. Thus some improvement over

the concatenated segment algorithm might be had by
overlapping and combining segments that are derived by

a simple interpolation scheme.

25
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The above considerations suggest an algorithm
based on an overlap-add scrieme, but where the segments
overlapped are still independent. <Let segments of
length N be generated as in the previous algorithm,
but then be windowed or modulated and overlapped
before combining. To pravent the output signal from
exhibiting modulation related to the segment period,
the modulated last half of segment £ must add to the
modulated first half of segment £ + 1 to yield first
order statistics that are independent of position.
Since the random process for each segment is independent
of all other segments, the overlapping halves add
incoherently. Thus an appropriate modulating
function is a sine or cosine half cycle pulse that
has zeroes at each end of the segment and is unity
at the center. The interpolation algorithm that
produces a segment modulated by such a sine pulse is
easlly derived.

Let sz(t) be the sampled, periodic segment function
derivable from the ¥k£'s by the Discrete Fourier Transform.
It is required that the spectrum of i L(t) be generated;

where

Ypp(t) = ypp(t) + cos N"'PES‘ , 2.30

26
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and where Ts.is the basic sample rate as before.

‘Multiplication of the time functions corresponds to

convolution of the transforms. The Fourier Transform

. of cos ﬁgi is just
8

M(E) = 600 - i) + 600 + )] 2.31
s s

i.e., impulses at 1;/2NTS. The cell spacing is l/NTs,

so M(f) consists of impulses at i% times the cell

spacing. Obviously since the function gpl(f) (spectrum

of épz(t)) is to be non-zero for only multiples of

fc = l/NTsP direct application of 2.31 is not useful.
However, by applying a little sleight~of-hand, it is
possible to obtain the spectrum of a signal that is /
functionally equivalent to épz(t) and that has

components only at f ='kfc for integer k. The trick

is to redefine the Hk's as the spectral magnitudes

at frequencies £ = (k + %)fc. Convolution of each

of the spectra ¥L(f) generated from the new ﬁk's
with M(f) yields the desired spectrum ?pl(f)’ where
each component §p£(kfc) is the average of the two
adjacent components of gt(f)’ Y, p and ¥(k+l)£‘

~

The transform of §pt(f) then produces the function

§pt(t)’ of which one NTS -~ second segment between

27
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zeroes of the sinusoidal envelope is added to the output
yX(t) being generated. The fact that the phases of the

components of §p£(r) are uniformly distributed over 2x

radians permits taking the NT_-second segment of y L(t)
©-NT, NI s 2

from —s— to —— with no loss in generality. To find the

PSD of the output generated by the latter method, let

¥pt(f) be written

= §oE oy, ste-Gwebr) 2.3
Y o (f) = § (£-(rN+k+3 .32

where the YkL are generated from the redefined Hk's as in

2.17. <Convolving with M(f)

) « N/2-1
{ v 1
; Yor(f) = 1L S SN S Y (6 (f=(rN+K)T, + 8(f-(rN+k+1)f )
2.33
Isolating a segment of length NTS results again in
convolving with fL sinc f/fc, yielding”
c .
: LT My stne @ oNek)esine @/t ))
Y, (f) = Y. ,{sinc =rN-k)+sinc (f/f -rN-k=-1
§ -4 Tk w sz =KL c ¢
! 2,34
2 or

! N/2-1 ©
N » ’ - l _ _ - e
% ’f_z\f) = Ek}-N/a Yie rz_n {sinc (f/f ~rN-k) + sinc(f/f -rN-k-1)}

2'35
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The Energy Spectral Density of ﬁl(f) is then

';z(f) = E[Y,(f) Y}(£)] 2,36

b

1 l/zz-l N§2-1

. E[Y, % ] [sine(sT -#N-k)
"’x--wz:-nxz, T JJ rz_ sinc P

f by f
inc( ~-rN-k-1)]J* i ~mN- b ~mN-j -1
+s nc,r-c- r )l- ] s nc(r;- mN-J )+s nc(r: 3-1)]

E
4
E
B
E
[
E
3
:

2.37
Again, th is independent of YJ ) unless k=j, and then
# 2
E[Yyp Yol = Hy
% N/2-1 . =
; 1l 2 f f 2
: ¢ (£)= HS (] ({sinc(4 -rN-k)+sinc (s -rN-k-1)})
; oo 2 kZ-N/z kK rew T N
E
S 2.38
S .
§ Finally, the PSD of f(ti is again just twice the average
3 over L of 2.38 (factor of two due to overlap), or
. i
|
i ¢ (r) = 2-¢5 (F) 2.
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The form of 2,38 is the same as 2.10 and 2.25 except

that the interpolating function is the sum of ‘two
sinc(x) functions displaced by unit separation.

Writing the sum out,

b ¢ +tx+!

sinc x + sinc(x + 1) = 312‘*x sin(ax + v)

- ER X1 2.40

Note that the result has the same oscillatory behavior
as sinc x, but falls off as x2 rather than x. This is
especially beneficial when it is desired to produce
én output !x(t) whose spectrum has abrupt changes in
level as a function of frequency.

Summarizing, the straightforward application of
standard convolution filter <sechniques to the synthesis
of a random process with specified PSD requires on
the order of a ractor.of four more computational load than
a minimum implementation ignoring circular convolution.
Although the PSD at the specified points and the first
order time statistics are the same, the minimum implementa-
tion output is dis;;ntinuous and may be unsatisfactory
for transient-sensitive systems. A compromise solution
requiring a factor of two overlap and therefore a factor

of two more computational load is somewhat more satisfactory

in that the output is continuous, but the derivatives

30
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at the segment ends are still discontinuous. However,
it will be shown in Chapter 3 that the factor of two
overlap is very desirable when discrete or line

components are to be added to the generated signal.
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CHAPTER III
IFFT GENERATION OF DISCRETE FREQUENCIES
A. The Exact Synthesis Algorithm

In an analog system, the generation of a sinusoidal
waveform is usually implemented by constructing an
oscillator having the desired frequency .

The direct adaptation of this approach to discrete

or line frequency generation by a digital system requires
a second order difference equation with a pole

at the desired frequency. As a general digital synthesis
technlque, this approach has problems with stabllity

due to a coefficient quantization, as well as the
disadvantage that each frequency requires a separate
generator. On the other hand samples of the desired
sinusoid are generated one at a time, and thus for a
small number of discrete frequencies desired, the

meager storage réﬁuirements are attractive relative to
block processing techniques. However, for §he case

where the sum of many discretes 1is desired, significant
computational savings can be obtained by utilizing

block processing with the Fast Fourier Transform (FFT).

Implementation of a general second-order difference
equation requires about the same amount of computation

as an FFT butterfly. Generation of N samples of a
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single sinusoid by difference equation requires N
such computations, whereas generation of N samples
by IFFT reﬁuires.glogzN computatibns for the
transform plus whatever computation is required to
specify the desired sinusoid in the DFT domain.
Thus, for N nn the order cf 1000, generation of the
sum of more ‘than 5 discretes begins to favor the
FFT approach unless an unreasonable amount of"
computation is required to specify the lines in the
sampled frequency space input to the IFFT.

For generation of discretes with frequencies that
are exactly equal to the cell frequenciles fc = fs/N,
where fs is the sampling frequency, the specification
in the sampled frequency domain is trivial, Consider
the IFFT of N/2 single-sided complex frequency coefficients
Fk’ k=0,1,...N/2-1, to produce N time "samples :n’
n=0,...N-1. A non-zero F,., say Fkl, will result in a
contribution to the output time segment of exactly kl
cycles of a sinuésid (period = N/kl sample periods),
with a2 magnitude and a phase relative to the beginning
of the segment determined by the complex coefficient
Fkl. Since successive segments generated with the same
Fkl 711l match perfectly at the segment boundaries,
the result will be a perfect sinusoid (sampled, of
course) with frequency 2%fs. Thus for independent

discretes with frequencies in multiples of fs/N, a

single complex number added to the appropriate
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spectral cell before each inverse transform will
result in the desired sinusoid added to the outpuf
time waveform.

For frequencies that are not exact multiples of
fs/N, the situation 1s considerably less straight-
forward. Since the discrete Fourier Transform (DFT)
is information lossless and reversible, the easiest
way to see what is required to generate arbitrary
frequency sinusoids is to consider the forward
transform of successive segments of the desired
waveform, First consider the (complex to complex) DFT

of an arbitrary complex exponential w(t) given by:

J(2nfat+a)
wit) = e 3.1

where fa is between 0 and fs/E, and ¢ is the phase at the
beginning of the segment of length NTs'from which N
samples have been taken. Let fa be expressed as

’

fs

fs
where N is the cell spacing, and m is an integer and
d less then unity. hj% is then the next lowest cell
frequency, and d is the fraction of a cell spacing

. £

that fa is above mT% . The sampled version of w(t)
is then

e
Wi(t) = ] edoed2n(mid)g nTy 6(t-nTy) 3.3

Rt
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and the samples of the segment of interest are

en
3 . J (Sr(m+d )n+a)
év W(n) = e i -N- 'y n=0, 1 sve N-l ) 3."

where the fact that fsTs = 1 has been noted. The DFT
is then

T T I T T e Ty

2%n A 2unk
N-1 J—N—(m+d) it b
W(k) = }J@ ] e e 3.5

n=0

13 sm:q“;;":,».u-;

Removing the phase angle from the sum and combining

the exponential arguments

oJu N-z-l -3 3R (k-m-a)
- e

W(k) = N Lo 3.6
From Appendix A,
Nil gjzﬁnu = Nea—'jﬂ(!‘ii&}-)u sindy(u) 3.7
=0
énd
: W(k) = o SHCH-1) eon-a) sindy (k-m-a) 3.8

If 4=0, only W(m) = eJa is non-zero as was noted above,
i However, for any non-zerc d, 0 < d < 1, all W(k) are

i . non-zero. The magnitude of the W(k) are governed by
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the sindN(k-?-d))fqrm, and the phases are governed
(N-1 ;
by et o - TN (k-m-d)), where a 1s the desired phase

angle at the beginning of the segment.

For a real time function

W(t) eJ (‘27‘39\1} + u) + e-J (*?.ll’rat + G) . 3.9

By linearity of the DFT, the corresponding sampled
spectra 9? a sampled segment is given by the. sum of

two Cerms at #f,

e -ng(k-m-d)f

W(k) = - © sindN(k—m-d)
-Ja  Jg(k+m+d)
// + 31T: e N sindN(k+m+d) . 3.10

-

To avoid unnecessary cqmplication in the math, the
following arguments will be in terms of generating a
single complex exponential. The corresponding real
sinusoid is easily obtained by summing a pair of
conjugately symmetric exponentials at ifa, the
desired frequency.

The required synthesis algorithm 1s thus to add
contributions to every spectral cell (for each discrete
frequency desired) according to 3.8 (or 3.10). Since
there will be exqctly m+d cycles of the required

sinusoid in each N sample segment, the phase angle
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a must be increased by 2vd radians for the generation
of successlve segments to maintain continuity from

one segment to the next.
B. An M Cell Approximation

The computation of the W(k) for N/2 spectral cells
to generate N output samples obviously requires more
computational effort than direct generation of the
sinusoid in the time domain, even before considering
the overhead of computing the inverse DFT. Thus the
exact solution using FFT techniques is not practical
unless the required frequencies can be constrained
to the set f, = nf,, n=0, #i, ..., #N/2-1,

If, on the other hand, something less than perfec-
tion is acceptable, an approximate solution may yield
the hoped for computational savinés. “Since most of
the power in the spectral domain is contained in cells
near the desired frequency, it would seem reasonable
to approximate t;e complete spectral description by
truncating the tails of the sindN(x) envelope or by
some other equivalent operation. This could result in
an acceptable number of coefficlents to be specified
for each segment of each discrete required in the
output. If a 1024 complex to 2048 real IFFT is being

utilized and if only ten non-zero coefficients per

discrete will produce acceptable output results, the
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generation of 10 complex coefficients in the spéctral
domain becomes: quite attractive relative to having %o
genergte 2048 numbers in the time domain for each
sinusoid desired.

Assume that only the M largest (in magpibude)
contributions per: complex exponential are to be
retained unmodified in the sampled frequency domain.
Since the contributions of all other cells are to be
eliminated, the total power 1s decreased by-the sum
of the squared magnitudes of the eliminated spectral
components., In fact, due to the orthogonality of
the Fourier frequencies, the M largest components
form a least mean squared error estimate of the original
signal 1f only M cells may be non-zero. Thus if mean
squared error is an acceptable criteria, adding the M
largest contributions based on either-3.8 (for single
sided spectra) or 3.10 '(for double sided spectra)
Yields the optimum approximation,

Since the siﬁdN(x) envelope of the spectral
magnitudes decreases monotonically on either side
of the desired frequency, zercing all but tke M
largest components is equivalent $o multiplying the
spectrum by a pulse or "window" of unit magnitude
and width Mi; . Multiplication in the frequency
domain is equivalent to convolving the time function

(sinusoidal segment) with the transform of the window,
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The resulting time function segment can be determined

by an inverse DFT of the windowed spectrum

mﬁ% 'éﬁﬂk
s(n) = [ wWk)e N . 3.11
k=m-g*l
Using 3.9,
M . .
m+ ; 2nl 2ank
z N-1., =j5g=(k-m-d) J
sy« e E e T e ¥

k=ﬁ-§+1

3.12

Interchanging the order of summatlion and refactoring the

§ exponentials,
N-1 J2n£(m+d) m-l%l- j2ﬂk(n_z)
; S(n) = e.‘]a z % e —N—' 2 e T
; £=0 k=m—§*l
!
§ 3,13
‘ 35 (a-1)
Factoring an e from the last summation and
modifying the summation limits correspondingly,
o M
2nl 2mm 21k
N-1 IS (mid)  JS—(n-t) 7 jE=(n-g)
‘s(n) = ejq z % e N e N 2 e N
£=0 B
3.14
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Factoring the original sinusoid from the summations, and

reordering again,

"M . .
éﬁﬂ(mm) 2{ 18R (-2, N-1 3B (k-a)

s(n) = el _ e i e .
ka-%*l £=0
3.15
The last sum is just the sindN(k-d), 80
. ‘M
2nn = Znn
J&S—(m+d) 2 (k-d) -J (N-l)(k-d)
S(n) = eJC e T ' N
k=-§+1
sind (k-d). 3.16
|
| or, {inally, the ‘desired form,
1o ?{,E(ma) 7 J5(k-d) (2n-N+1)
s(n) = e ] e ’ sindy(k-d).
k=etl
3.17

This is Just the deslred sinusoidal segment, but modulated

by a gain factor which is dependent on both n and d.
An example is helpful in illustrating the result
of the uniform window approximation. Figure 3.1 shows
a 128 sample function segment which covers 10.25 cycles
of a sinusoid. Figure 3.2 is the corresponding 64 point

single sided spectra derived by DFT., Notethe 180°
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FIG. 3.1 SAMPLED SINUSOID SEGMENT - 10,25 CYCLES, 128 SAMPLES
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phase difference for components just above and just

below the actual frequency. A uniform window of width

M=10 is applied to produce the approximation spectra

in Figure 3.3. An inverse DFT then gives the approximation
time segment shown in Figure 3.4.

Crudely speaking, the major éffect of truncating
the talls of the segment spectrum is to attempt to
"match up" the two ends of the segment. This is to
be expected since the "end-around" discontinuity, or
equivalently, the discontinuity from one "cycle" to
the next of the periodic waveform represented, cannot
be sustained without the frequency components contained
in the tails of the spectrum. The error for the example
given is shown in Figure 3.5, and is representative
of the relative size of the error at the ends of a
segment versus the center pcrtion,

A composite time segment was constructed by concatenating
four segment approximations derived as in the example
above, but with initial phases of 0, v/2, x, and 31/2
radians, respectively. The resultant time block contains
512 samples covering a total of Ul cycles 6f the desired
sinusoid, and is shown in Figure 3.6. Note the rather
severe effective modulation of the signal envelope in the
vicinlties of the segment boundaries. The error function
for the composite waveform is chown in Figure 3.7, and

has a maximum value of .55 relative to a perfect (all
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spectral comporiénts preserved) waveforn amplitude of +l.
The maximum excursion of the approximition waveform has
a relative amplitude of 1.09.

The spectrum af the composite approximation wave-
form is shown in Figure 3.8. The largest -undesired
component is about 24 db below the desired signal
strength. Note that the major error componentsare
at frequencies fa t;n/NTs, where fa is the desired
frequency and N'I‘s is the length of each approximation
segment. This is the behavior expected in the frequency
domain corresponding to the efrfect described above of
the time waveform being effectively modulated on a
once per segment rate.

If the criterion of acceptabllity is other than
minimum mean square error, such as ratio of desired
signal éo largest undesired component or minimum

amplitude modulatioﬂ of the time function, the uniform
window may not b? the best solution. Shading of the
window coefficients was briefly pursued, but in
general decreased side lobe strengths were obtainable
6n1y at the expense of increases in amplitude
modulation in the time function. In addition, the
fact that the spectral truncation operation reduces
the "end-around" discontinuity for each segment means
that discontinuities are created in the composite output
waveform at the segment boundaries. Although increased
fidelity can be achleved by using a wider window, any

computational advantages of the technique are soon lost.
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It appears, then, that this particular FFT based algorithm

is not very useful unless a rather coarse approximation

is acceptable, preferably with only a mean square error

fidelity requirement.
C. The "Overlapped-Hanned" Algorithm

The fact that the major difficulty encountered in
the above algorithm was an effective modulation of each
segment suggests the possibility of purposely introducing
a specific modulation characteristic and ‘to compensate
by overlapping and summing\adjacent segments; 1.e.,
introduce redundant processing. This is all the more
attractive if the desired discrete components are: to
be combined with a specified broadband signal, since it
was shown in Chapter 2 that a two-times redundancy factor
yielded.a fairly satisfactory broadband algorithm. If

the same factor of 2 can be exploited for the discrete

case, the approx}mation coefficients can be added to
the broadband spectra before transforming, and thus one
IFFT does all.

Since the contributions in each of the overlapped
segments add coherently to form the total signal
for the discrete case, the sine pulse welghting used
for the broadband algorithm is not applicable., A
triangular pulse modulatioq form meets the requirement

in the time domain, but is not obtainable by simple
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manipulation of the spectrum of the signal. On

RS

4

the other hand, the raised cosine modulation (corresponding

TRTE R

to "Hanning" shading) of the segment appears to be an
almost perfect solution to the problem. Overlapped

signal segments that have been modulated by the Hanning

T

pulse pH(t)

5 + .5 cos 2nt/NT ;3 [t] < NT /2
- pu(t) = 3.18
A 0;{t] > NT /2

will add perfectly to produce the original waveform.
g The question thus becomes: can “he Hanned segment be

- more easily approximated than the unmodulated segments?

Returning to the spectrum of the unwelghted segment,
Equation 3.8, the spectrum of the Hahned segment WH(k)

is obtained by convolving with the transform of

%(1 + cos 27 n/N). The latter is the well known

L4

X P e

P, (k) = % §(k+1) + % (k) + % 5 (k-1) 3.19

i.e., impulses at zero frequency and at + one

frequency cell 7% .

Convolving 3.8 with 3.19 the result is
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3n Rl s n () Geem)
e

Wﬂ(k) = ed% e (2- sindN(kem-d)
“Jﬂ(gék)(k-m+l) -dﬂ( ) (k-m-1)
+ F e sindN(k+1-m-d)+F e
sindN(k-l-m-d) 3,20

Manipulating and writing out the sind functions,

Ja ei"(%r’d =3 () (kom) [ 4 m teomea)

(k) = e
H m SinN’( k-m-4d)
-4 ¢N-1
+ edﬂ( ) sinfn(k-m-d)+n] . 3“( )
g Sin[N(k-m-cHl)J
sin{wv(k-m-d)=-n] ’ 3.21

sin[{T(k-m-d-l)]

.

In the last two terms, sin[n(k-m-d)#r] is Jjust
-sin[v(k-m~d)], which can then be factored out of
the brackets. Since the approximation is concerned

with the Wy(k) for k near m, sin ﬂik;ﬂﬁﬁil) is

approximately equal to n{E:Eﬁgil) for reasonably large
N, say on the order of 103 Similarly the factor
( ) appearing in the exponentials is approximately

unity for N large. Thus, for k in the vicinity of m,
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(k) % g e3® &I T sinpnem-a) Bty

. 1 . 1 }
Z(k-m-d+I) ' 2{k-m-d-1) 3.22

Factoring a Tﬁf%:HT from inside the brackets and combining,

1 _J(a+nd) o (k-m){sinn(k-n-d) . ,2(k-m-d)3-1
Wylk) 3 5 e (-2 Cemf TETD (eomed)?o1 )}

3.23

The magnitudes for the frequency contributions around k = m
are glven by the factor in brackets. The phases are determined
by a« + nd, plus some number of = rotations determined by
k - m iIn the last exponential, and the sign of the factor
in brackets. In the example given below, 1t is shown
that these factors of (-1)" are responsible for three
consecutive phase shifts of » radians each in the vicinity
of k = m,

The approxima%e wH(k) given by 3.23 to be generated
for the synthesls algorithm has the following exploitable
characteristic. As was noted before, only the phase a
changes for any of the WH(k) from one segment to the next.
Furthermore, the only phases required are either o + nd or
a + 7d + v, Thus, 1f M magnitudes are computed and stored
for an M cell approximation, only one cosine and one sine

are needed to determine the real and imaginary parts to

50




2 e e i i g ri——

NOLTR T4-215
be added to the synthesized spectrum for each segment.
Note that unless a particular phase is required, the initial
phase (at+wnd) for the first segment can be arbitrary, and
all that 1s required thereafter is to increase the a+nd
term by rd on each iteration.

Since the primary virture of Hanning weighting is to
greatly reduce the sidelotes of the sinc(x) DFT filter
function, it provides almost the same reduction in the tails
of the sindN(x) form of 3.8. The result is that, although
as before perfect synthesis requires contributions in all
frequency cells; the Hanning modulated discrete segment
achieves a very close approximation with many fewer non-zero
compenents.,

The basic parameters of the previous example were
repeated in the example below illustrating the application
of the "overlap-Hanned" algorithm. A set of time function
segments, each consisting of 10.25 cycles in 128 points,
with phases incremented by 2n/8 rad. for each successive
segment, are forward transformed, Hanned, tails truncated,
inverse transformed and combined to form a composite output
time function of 41 cycles in 512 points as before. Figure
3.9 shows the same 10.25 cycle segment as shown in 3.1, but
after modulation by the raised cosine pulse, of "Hanning",
The corresponding spectrum is shown in Figure 3.10. Note
that the tails of the spectrum have been reduced considerably,

such that barely four components on each side of the actual
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frequency are within the 48 db range plotted. Note in
addition that the phase undergoes three shifts of =
radians each in the immediate vicinity of the desired

- frequency, compared to the single = radian shift

(Figure 3.2) for the unHanned segment.
The talls of the spectrﬁm of each Hanned segment are

then truncated to produce the spectrum of the approximation

as before. For this example, only the six largest ccmponents

in Figure 3.9 are retailned, which corresponds to throwing
away all contributions that are more than about 40 db
below the largest one., It 1s interesting to note that,
in'Figure 3.2, no components in the unHanned segment
are below the -40 db level. Finally Figure 3.11 shows
the composite 512 sample approximation waveform ottained by
the overlap-Hanned algorithm. The error is plotted in
Pigure 3.12. The approximation spectrdh, shown in
Figure 3.13 has no sidelobe components larger than 50 &b
below the desired'component. Figure 3.14 1s the spectrum
of the error alone, which consists primarily of components
displaced by multiples of 2/NT_, or the reciprocal of half
the segment length. The doubling of the effective modula-
tion rate relative to the first algorithm is due to the
factor of 2 overlap, since the modulation of each segment
is definitely still characterized by the period NTS.

The "overlap-Hanned" synthesis algorithm for discrete

components yields very high fidelity with a very small.
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FIG. 3.12 ERROR s'(n)-s(n) FOR OVERLAP-HANNED APPROXIMATION,
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number of non-zero spectral contributions. In particular,
a 8ix component approximation empirically appears to yield
a maximum error of slightly more than 1%, and maximum
spectral sidelobes of about -50 db. Even a 4 cell
approximation has less than 5% error, and about -35 db

max sidelobe levels.,
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CHAPTER IV

TIME DOMAIN SYNTHESIS OF DISCRETE FREQUENCIES

A. Harmeonic Sets

Quite often it is desirable to generate sets of
narrowband components which are harmonically related. That
is, all of the members of a particular set are just the
spectral components Yk of a periodic or almost periodic
time waveform. Let the time function of a particular

harmonic set be denoted by y(t), defined by

© Jonkf t
yiey= 1 oy e 4.1

k=z—eo

where f °is the fundamental frequency of y(t). The

spectrum of y(t) is then

Y(r) =k'{ Y, &(f - kf,) . h.2

Although each of the components of Y(f) could be
generated explicitly by the techniques described in
Chapter 3, it becomes profitable to generate y(t)
directly in the time domain if the number of non-zero spectral

components Y(kfo) is fairly large.
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If identical coples of a waveform defined over an
interval To are concatenated in time, the result is a
periodic signal with fundamental frequency l/To.

Thus if a lossless delay line of length To contalning
one period of a desired waveform were recirculated as
illustrated in Figure 4.1 the signal observable at any
tap would be the perlodic signal desired, with fundamehtal
frequency f = 1/T,. If the waveform contained in the
delay line is exactly one full cycle of a sinusoid, the
spectrum of the signal generated will be non-zero only
at the fundamental frequency :ﬁo. However, if an
arbitrarywaveform 1s contained in the delay line, then
in genera. the spectrum may contain any of the
frequencies harmonically related to fo’ i.e., kfo for
all integer k. The spectral values at these harmonic
frequenéies are just the coefficients obtalned by
expanding the To seconds of signal in the delay line
in a Fourier series.

The discrete‘equivalent cf the above operation is
obtained by loading a shift register with the samples of
one period of a waveform y(t), connecting the last stage
tc the ‘input for recirculaticn, and observing a discrete
periodic signal yX(t) at any stage in the shift register,
For an N stage register and a shift rate fr, the sampied
periodic signal produced has a fundamental frequency fo =
fr/N. Since the resultant weveform is both sampled and

periodic, its spectrunm Yx(f) is also both sampled and
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periodic, with a sample spacing of f, and period

Nfo = fr’ Since a shift register may be shifted

at a variety of rates, the fundamental frequency of the
signal generated by the discrete system may be easily
adjusted to any desired value by the appropriate

choice of shift rate fr. Figure 4.2 illustrates the
output of a six state register for two different

shift rates, and the corresponding spectra for each.

If the shift register version described above is
applied to the generation of a periodic signel with an
arbitrary harmonic structure, care must be taken that the
éhift register is sufficiently long to allow independent
definition of all desired harmonics. Since the discrete
spectrum YX(f) is periodic with period Nf,, it is
obvious that there are at most N different complex
harmonié amplitudes. However, since &x(t) is a real
time series, the spectfal components exhibit conjugate

symmetry about f'= 0; 1.e., if

2nkt
Xppy - ¢ o _
vy (t) -k=z-~ Y, e = Real 4.3

then

Y, = Y*: 4.4
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FIG. 4.2 OQUTPUT OF 6 STAGE SHIFT REGISTER FOR TWO DIFFERENT
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where ¥ denotes the complex conjugate. Thus for a N
stage shift register, at most [(N-1)/2] harmonics plus
the d.c. component are independently specifiable, whére [ ]
denotes the integer part.

A further complication exists when the valid output
band may be significantly wider than the band cove~=d by
the desired harmonics of the generated signal.
Figure 4.3 illustrates a case where, if zero fililed
harmonics are not explicitly included in the waveform stored
in the shift register (corresponding to sampling at greater
than the Nyquist rate and therefore additional len~“h of the
shift register), undesired harmonics are created ii the
output band of interest for low shift rates (low fundamental
frequencles) due to the periodic nature of the generated
signal spectrum. In general, if the required valid output
bandwidth i1s B and the lowest fundamental frequency required
is fmin’ the minimum nﬁmber of harmonics that must be
specified is B/fmin’ or equivalently, the minimum shift
register length is 2B/fmin' From Figure 4.3c it can be
seen that if the highest non~zero desired harmonic is m,
then the minimum value the shift rate can be is B + mfmin'
or the valid output band plus room for the image spectra at
the shift rate fr' The minimum length of the shift

register is then given by the next integer larger than

Lol Snins ooy Ny = [£./8 40

Thus, for all fundamental frequencies for which the

J+1 = [ B/rmin3+m+1.

62




- 23a

2.3b

2.3c

NOLTR T74-215

Fo(f) ‘ 8
“ﬁa
NN RN N
—
UNDESIRED

SPECTRA OF X2(t) FROM FIG. 4.2b SHOWING UNDESIRED
HARMONICS IN BAND OF INTEREST 8
F(f) ]

| V et

DON'T CARE

L i /S

DESIRED SPECTRA IN BAND- OF INTEREST

Falh b

l
t l
|
i

| | . IHIL,

fl’3

PERIODIC SPECTRA VALID IN BAND OF INTEREST

Xyt

I | [

[TTTTTTT  TTITrITT 1

Tr3 =1/ fr3
CORRESPONDING SHIFT REGISTER OUTPUT REQUIRES
12 STAGE SHIFT REGISTER

FIG. 4.3 MINIMUM REGISTER LENGTH FOR GUARD BAND

63




NOLTR 74-215

desired waveform must be generated, the unwanted
harmonics are outside the band of interest and may be
removed by analog filtering after D/A conversion, or

Just ignored.
B. The "Slip-Sample" Algorithm

The above technique for generating periodic signals
with arbitrary harmonic structure and variable fundamental
frequency requires a dedicated recirculating shift
register and a controllable rate shift clock, both of
which are special purpose hardware. The following
technique is an adaptation of the principle of the
above implementation, but is designed to be realized
as software in a general purpose computer,

Assume that the required number of discrete samples of
one period of the desired signal is stored in a block oi
random access computer memory. If the samples are
sequentially read from the block by the computer and
fed to the outpué D/A converters, the result is identical
to the shift register output described above (the computer
returns to the beginning of the block after-each pass through
the block). The rate at which the samples are read and
output is determined by a clock interrupt or other
timing technique, and as before determines the fundamental

frequency of the output signal.

64




NOLTR T4-215

In a more general case, however, the generation of
the periodic signal may be only a part of the overall
signal processing éroblem, and may be fed directly

- to other parts of the sampled data system. In the
usual case the entire system will be operating at
one fixed sample rate fs, and each part of the system
must accept and process data at the rate fs. This
rate is not in general related to the desired fundamental
frequency fo of the periodic signal to be generated.

One possible solution to this constrained problem
would be to adjust the size of the memory block to
be such that at the sample rate fs, once through the
block would be TO = l/f0 seconds, where fo is the
desired fundamental. This has two rather severe
drawbacks. First, the realizable fundgmental frequencies

are given by fs/n, where n 1s an integer. Thus, except

for extremely low fundamental frequencies (large n),
the realizable frequencies are few and far between.

In addition, even for very low fundamentals where

-

re~sonable frequency resolution is available, each
¢ e in fundamental frequency requires rederiving
the complete set of time samples stored in the
memory block.

A more viable solution to the fixed sample rate
problem is to maintain a fixed block size adequate

for the lowest desired fundamental frequency, and
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to vary the effective rate at which the computer

scans through the block. This variation in readout

rate 1s accomplished by maintzining and incrementing
; the position in the memory block with a2 precision

i much greater than one memory cell. Since it is not
? really possible to read between memory cells or

% desirable for computational loading considerations
to interpolate, the block position is rounded (or

truncated) to the nearest integer memory locaticn for

TR AP e

the actual data access. In simple terms, the net

; effect 1s to "stretch" the stored waveform by

occasionally duplicating a value in the output (reading
a memory cell twice before going on) or to "shrink"

the waveform by occasionally skipping a cell in the

i readout. '

i Consider a memory block of length N and block

; position parameter P, as shown in Figure 4.4, Assume

that P is maintained to a sufficiently high resolution
as to be essentially continuous relative to the
quantization of the memory into N words. If the block
of memory contains one period of some waveform, then

P is 1n effect a phase angle of the fundamental of the

Mg ot L D o e S ey

periodic waveform. For a non-integer P between the

it xa

lth and 5th samples as illustrated, the contents
of the fourth cell are used as the output for, say,
the ith sample. P is then incremented by an amount

F derived from the desired fundamental frequency,
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and the appropriate memory cell is accessed for the
(i+1)St sample, F 1s specified with the same resolution
as P, and is therefore also not 15 general an integral
number of memory cells. After incrementing by F, P

is retained modulo N to maintain it within it¢s valid
range. The fundamental fréquency fo is then given

by the rate of passing completely through the block,

or

f=f'§. 4.5

It 1s important to note here that the memory
locations accessed twice (or skipped, as the case may
be) are in general different on each pass through fhe
block. In addition the number of "doubles" or "skips"
per pass may in general alternate between two values
such that the average number per pass is non-integral.
Thus this technique differs significantly from Jjust
modifying the block by duplicating or dropping one
or more samples, It is also obvious that for frequencies
which require a non-integral number of "glitches" per
pass, the output signal 1s not truly periodic, nor is
it even composed of samples of the desired periodic
signal. It 1s really only an approximation to the
sampled version of the desired signal and on the average

(in some sense) has the right behavior.
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The analysis of the sampled data signal generated
by this technique is alded by identifying the operations
performed as components of a more familiar system.
Let the desired periodic signal be y(t), with period
To and fundamental frequengy fo = l/To. Assume that
samples are taken from y(t) at a rate fsl which is
N times the fundamental. Thus there will be exactly
N samples in each period of the sampled signal y*(t).
The samples (or impulses) of yX(t) are now applied

to the input of a "boxcar-integrator" filter, 1.e.,

. a filter with an impulse response of a rectangular
pﬁlse of unit amplitude and duration To centered at
t = 0. Let the filter output be designated yb(t).
If yb(t) is now resampled at a second rate fs s in

2
, samples taken during any

general not related to fs

| interval (n-%)To <t < (n;%)TO will yleld the value

of the sample taken from y(t) at t nTo. This 1is
exactly analogous,to the situation where samples
taken from y(t) are stored in a computer memory, and
then accessed by rounding sample "times" to the
nearest memory address, assuming here that samples
are stored such that increasing time corresponds to
increasing addresses. (Truncating instead of
rounding to form the address would introduce a delay

of half a memory cell, buft would yield equivalent

overall results.) The output signal is therefore
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the reésult of 1) multiplying the desired y(t) by an

impulse train of frequency f 2) convolving the

s H
1l
result with the impulse response of the boxcar filter,
and 3) resampling its output by multiplying by the
impulse train of frequency fs . Correspondingly,
2
the spectrum of the output signal is obtained from the
spectrum of y(t) by 1) convolving with an impulse
train of spacing fg (which is some integral multiple
1
of the fundamental frequency) as a result of the initial
sampling process, 2) multiplying by fl— sine(£/f_ ),
Sy 51
the filter function of the boxcar integrator, and
3) convolving the result with a second impulse train
of spacing fs .
2
Since for the case of interest here the signal y(t)
1s periodic, its spectrum Y(f) is impulsive with

spacing fO:
0y =5 ( ) "
Y(£) = Y, §(f - kf .6
k=-fi/241 ¥ °

where Y(f) has been explicitly band-limited in
anticipation of sampling at Nfo. Performing the
sampling operation, Y(f) must be duplicated every

rsl = Nf£_,

79

Vv i e Y A BTN el e




TN

A aatn Loas rerl ek C e x

WIS AT

G0 uaak gt e

s Sand

et s Ty

NOLTR T74-215
Y*(£) f Y(f-mf_ ) f N/§-l Y, &(f-f [k+mN]) 4.7
= -mn = - m .
M- 817  me-e ke-N/241 ¥ °

Multiplying by the filter function,

Y () = i sinc(e/NE) T N/ﬁal Y, §(f-f [k+mN]) 4.8
f = 6 - + »
b S L °

Convolving with the seconc¢ impulse train for the final

step, the spectrum of the output yg(t) is obtailned:

YX(£) = Y, (f-rf_ ) 4.9
b riﬁ b s,
or
farf
()= I sinc(—xﬂeri-) P Y, s((f-rr_ ]
re-a 0 0 m=—e k=-N/2+1 52
- [k+mN]fo) . . uolo

The system under consideration has a fixed system sample

rate fs, and thus the second sample rate rs is constrained
2
to the value fs = fs. Now define a parameter o« as the
2
ratio of the first sampling rate fs to fs

1
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84 ’Nfo .afs
c"‘-r—s-“?;-; fogT 4,11

Substituting 4.11 into 4.10,
X1y = | o stne(en® ] Ngen ([£-rt.]
Y- (f) = sinc Y. 6([f-rf
b re-e a? ofs " m=me k=-N/2+41 K 5
<&

- [fmlat,) 412

S

The resultant spectrum Yg(f) has a replica of the boxcarred
spectrum at each multiple of fs, as is expected for any
sampling operation, but with the effective frequency

scale of each replica about the appropriate value of rfs
variable with a, Since a is proportional to ro, the
frequency of the fundamental of the harmonic set generated
can be controlled by controliing a. From 4,11 fsl = afs,
or ft = afi- s, S0 that the sracing between samples for

the second %amplihg process is o times the spacing of
samples going into the boxcar fllter. The latter samples
are stored one to each memory cell in the cémputer memory,
and thus l/rSl in terms of memory cell spacing is unity.
The spacing in memory cells retween samples for the

output sampling process is therefore a. But thls spacing
is just what was previously cefined as the quantity F,

and from 4.5 and 4,11, F = a 1s easily verified.
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The initial sampling process results in a non-band
limited spectrum even though the original spectrum Y(f)
was band-limited. The effective boxcar filtering
operation reduces the amplitude of the replicas generated
by the first sampling operation, but since the sinc(f/fsl)
envelope only falls off as 1/f, considerable power still
remains in the undesired replicas. After the second
sampling operation these reduced but non-zero replicas
of the desired spectrum in the vicinity of ifsl, i?fsl,
ete., of the box-carred spectrum may be aliased back
into the band of interest by the resampling operation,
aﬁd in general will appear as weak, discrete frequencies
not harn. .lcally related tc the desired fundamental
fo. These artifacts may be quite large if generated
by harmonics in the original waveform with frequencies
close to'1/2 of the original sample rate fsl. This is
due to the fact that the sinc(f/fsl) envelope of the box-
carred spectrum is down only about 4db at the Nyquist
frequency rsl/z. If the original waveform 1s oversampled
by a factor of two such that all non-zero harmonics are
below fsl/h, the minimum attenuation provided by the
sinc envelope becomes a little better than 10db, and
increases by 6db for each additional factor of 2 in
oversampling (see Figure 4.5). Thus by increasing the
memory required to store the waveform it is possible
to make artifacts as small as desired, However, the

6db per octave roll-off of the sinc function makes
this a fairly expensive solution to the problem.
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If the memory address increment F which determines
the fundamental frequency of the output is fluctuated
rapidly by some small amount, t'e effect is to smear
vhe power at each of the harmonically related disc cete
frequencies over some finite bandwidth. The bandwidth
of the nth harmonic will be n times the bandwidth of
the fundamental. In addition to being useful to generate
finite bandwidth narrowband processes, this phenomena
also tends to smear out the discretes in the band of
interest generated by aliasing. Unfortuanately if highly
stable discretes are desired, the aliased contributions
ﬁay still be unacceptably large.

Mor~ exotic interpolation schemes or other prefiltering
operations could be performed on the stored waveform
prior to resampling to reduce aliasing, but even linear
interpolation reguires a multiplication per sample, and
therefore it as well as more sophisticated filtering

schemes are impractical to implement.
C. Stochastic Filtering

Although conventional rfiltering algorithms are
inmpractical, an effective prefiltering operation can
be performed by "jittered" resampling, and thus the
aliasing problem can be reduced, The "jittered" sampling
technique is quite attractive relative to more straight-

fooward prefiltering methods due to its extremely simplé

{
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implementation. Practical application to the Memory-
Read-Out signal generation problem will be discussed
after deriving the spectrum of the output if "Jittered"
sampling is employed.

| The problem is as follows: the function s(t)is
given with Power Spectral Density (PSD) ¢s(f) and

autocorrelation function (ACF) ¢S(T). Therefore

¢ (1) = STE) s(E+7) .13

and
0 (£) = [To (x) e™I2™ g, 4,14

is just the Fourier Transform of ¢s(r).
Samples are now taken of s(t) according to the "jittered"

sampling scheme; i.e., the 1th

sample is taken at the time
i TS + Vys where Ts = l/fs is the period associated with
the underlying basic sample rate fs, and the v; are
independent, identically distributed random variables

with probability density function (PDF)

[ 4

p, (t) =p(t), alli 4,18
i

The sample values of s(t) obtained are then assigned
to a regularly spaced impulse train of period rs to

form a sampled function sX(t) given by
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§x(t) = E s(nT_ + Yn) §(t - nT) diub

nN=—0

The problem thus is to determine the PSD of s¥(¢t) in

" terms of ¢, (f), the PSD of s(t); and of p(t), the PDF of

the Yi'

Consider the sequence autocorrelation of the original

"Jittered" samples of s(t):

R(r) = s(nT_ + vn)s((n+r)Ts + D] 4,17

s Yner

where the average is to be taken over all n and over the

vy. For v and v .. identically equal to zero, R(r) is

n n+
Just the autocorrelation of s(t) for rTg delay, i.e.,

R(r) = ¢s(rTs); all v = 0 4,18

For an arbitrary distribution function p(t) for the

1 R(r) is the statistical average of ¢S(r) taken over

all possible v - Vo For r#0 the v; are independent,

n+r
and the PDF of the difference of two of the vy is Just

the auto-correlation of the PDF of each. Let pd(t) be

the PDF of v ... = v, i.e.,

n+r

[

pg(t) = [ plo) plott)do I.19

- 00

17
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Then the desired sequence autocorrelation function R(r)

is given by:

R(r) = [ py(t) ¢, (xT  + £)At; r#0 . b, 20

Since pd(t) is real, positive and symmetric, 4.20 may
equivalently be written

R(r) = [ py(t) ¢, (rT - £)dt; r#0 . 4,21

If the values of R(r) are now assigned to a regularl-
spaced impulse train of period TS, the discrete
autocorrelation function of the sampled function s*(t)

is obtained. Let R*(1) be the autocorrelation function

of s*(t) . Then

R*(1) = E R(r) 6&(r - rTg) + R*(0) . 4,22
IS=w

r#0

R*¥(0) is unaffected by the jittering operation and
therefore must be handled as a separate case, Substituting

for R(r)

R*(7) = E f[: Py (t)eg (rT ~t)dtTs (x-rT ) + R*(0)

&

PO 4,23
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Now define a continuous autocorrelation function

R(t) as follows:

R(x) = [7 pylt)eg(r=t)dt . 4.2y

If R(t) is sampled at points rTs,ythe result is R*(x)
except for r=o. Let the Fourier transform of R(«t)

be ¢ (f), and the Fourier transform of pd(t) be P4(f).
Then from 4.24

ep(f) = By(£)e (£) 4.25

Finally, since R¥(t) is (except for tv=o0) just a sampled
version of R(t), the Fourier transform of R*(x) is given

by

opx(f) = [ ep(f-rf ) + K =X+ I By(f-rf )e_(£-rf)

PR r:_‘

4,26

The constant K arises due to the fact that RX(0) # R(0)

since

R¥(0) = E{[S(T, + v,)1%} = ¢,(0) h.27
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and
R(0) = [ py(t)e, (t)dt 4,28

which is equal to ¢_(0) only if pg(t) = 6(t). Thus R* (1)

can be written

REr) = 1 RGx) e(e-rTy) + [6,(0) - R(D)] 8(x).  4.29
r: -~ 0O

The transform of the last term in U4.29 yields the constant
K

K= ¢s(0) - R(D) , 4,30
or, using 4.28,

K=06,00) = [ pyalt) ¢ (t) at . 4.31

L 4

The effect of the "jittered" sampling can be seen
from 4.25 and 4.26 to be almost equivalent to passing
s(t) through a filter with an impulse response equal
to the PDF of the v,, p(t). However, the one anomaly
of stochastic filtering 1s the white noise term K
which is added to the PSD of the final output. The
significance of the white noilse term is apparent if

one realiizes that the stochastic filtering is a power
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lossless operation, and that the power missing from the
attenuated frequencies shows up as whitée nolse. Since
the objective was to reduce the discretes generated in
the band of interest by alliasing, trading them off for
white noise is usually qulte acceptable. Further
properties of "jittered" sampling are discussed in
Balakirshnan(g) and Shapiro and Silverman(B).

The implementation of the stochastic filter by
jittered sampling in the memory read-out algorithm
is fairly simple compared with the computational
requirement of normal filtering methods, assuming that
the vy are readily available, After the block positinn
or phase angle has been determined as before and saved,
the vy is added to the phase and the result taken modulo
N to determine the memory cell to be accessed.

As a simple example, let P, (t) be uniform over
one sample period Ts' The transform of a pulse of
width T  is the familiar T, sinc(fTs). Since pd(t)

is the autocorrelation function of p, (t), gd(f) becomes
i

"

P (£) = 72 sincz(fTs) 4,32

This has its first zero at { = fs = l/Ts. Since the
power spectrum of the signal to be resampled was shown
to be already reduced by a sincz(fTs) envelope due to
an effective "box car" filter, the final spectrum

before resampling has been reduced by sincu(fTS) with.
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uniform Jittered sampling. More desirable filter
functions may be obtainable by careful design of the

vy density function, but the practical advantage of the
tephnique would soon disappear.

In summary of Chapter 4 then, a technique for
generating harmonically related narrowband processes
directly in the time domain has been -described.

The technique 1s designed to be implemented in a digital
system where the output must be constrainedto signal
samples at some system-determined sample rate. The
spectrum of the resulting generated signal was described
and shown to have potentially severe aliasing problems.
Increased memory for waveform storage, interpolation
schemes, and finally a statistical filtering technique
based on "jittered" sampling are discussed as means

of reducing the aliasing to tolerable levels.
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CHAPTER V
SUMMARY AND CONCLUSION

In summary, several algorithms for the generation

. of steady-state signal components with all-digital systems

have been presented and analyzed. Two abbreviated IFFT
algorithms for the synthesls of a broad-band random process
having a controllable Power Spectral Density function were
analyzed and compared to a more conventional approach of
passing white noise through a Finite Impulse Response (FIR)
filter. The simpler of the two algorithms involves concate-
nating segments of signal having an apbropriate spectral
composition, and results in a savings of 75% of the computa-
tional eoffort required in the FIR approach. However, the
synthesliced signal has a discontinuity at each segment
boundary which may restrict its application. The second
algorithm employs summing an overlap of appropriately
weight- } segments to'eliminate the discontinuilty, although
the derivatives at the segment ends are still discontinucus.
The overlap version results in a 50% savings in computation
load over the FIR approach.

For the synthesis of discrete components and very
narrow-band processes, a pair of algorithms for generating
approximation segments of the desired signal by inverse

FFT were investigated. Here the simplest version employing
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no overlap in output segments gives relatively poor

results. On the other hand, a corresponding version
employing the sum of appropriate’y weighted and overlapped
g segments glives ver good results with a minimal computa-

% tional effort. The two overlap algorithms, one for

F broadband components and one for narrowband or discrete
components, may be combined to produce efficiently

| with an FFT based system a signal having both types

é of components.

Finally, an algorithm for producing harmonically

i rich, periodic signals in the time domain was developed
f and analyzed and shown tc have potentially severe
aliasing problems. Various techniques to minimize

the undesirable effects of the aliasing are discussed.

The result is an efficlent, highly implementable

algorithﬁ for generating harmonically related signal
components.

The synthesis of signals with specific controllable
characteristics is a relatively new and still developing
part of the signal processing field. As the quality
and sophistication of signal generation systems improves,
more and more applications are found for their outputs.

" Especially with all digital systems, the ability to
produce signals modeling prodlems with random processes,
and yet to be able to reproduce the synthetic signal

exactly or with a controlled perturbation is extremely
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useful in evaluating the performance of a signal
analysis system. The application to simulators,
particularly in training devices; is readily apparent. .
However, although many new doors are opened by the
advent of practical, all-digital signal synthesis, the
results of this paper cleafly indicate the need for
careful analysis in applying the various techniques

to any specific problem.

Several of the results in the paper have potential
application in other areas of digital signal processing.
The technique discussed in Chapter 3 of summing over-
iapped time blocks which have been derived by inverse '
transfornming Hanning weighted spectra forms the basis for
an extremely flexible FFT filtering algorithm.

The results found in Chapter 4 for the spectrum of

a resampled digital signal stored in‘a delay line or
memory is of interest, for example, in a system where

a sampled signal'passing through a shift register

delay line is observed by a tap, the position of which
is changing with time. Also in Chapter 4, the concept
‘of using randomly disturbed sampling times to accomplish
at least rudimentary filtering as an aid in minimizing

aliasing would seem useful, although over a decade i

has passed since Balakrishnan's paper and little or no

application has been made of which the author is aware.,
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An effort toc determine what useful filter functions
might be obtainable under the constraints imposed on

its Pourier transform would probably be worthwhile.
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APPENDIX A

Consider a truncated summation of the form

RSO ERD P2 g 1S P B s viint o oo

P

parpl y

BN e tertn e otk AgE s it e e

b 2

s= ] % (A1)

3 n=0
:

g
% Manipulating,
2
Ef

N
;. as= § APeaVasa (A2)
: A=l
F

s-1a8=1-2N (43)
or
. . N
R" s = =2 (A1)

‘ Suppose A 1s a complex exponential such that S is of the form

| ' N-1 -3 5nu
S= J e (A5)
n=0 '
2
-anu

Applying Al, with A = e
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1 - ‘-JZIu
S= —-J-:;-— (A5)
1-¢°' X
-Jmu -Jiu
Factoring an e from the numerator and an e from the
denominator,
=Jru Jwu =Jmu
s_e' (e'-e ) (A7)
-J J -J
e K e Ly - e Ly
or
N-1
3% ( u
See N (sin :u) (A8)
sin T
Using the definition
sindN(u) -3 g-n-—:-:ll- (A9)
sin ™
the desired result is
2n N-1
N-1 -j=riu =3x(S)u
I e ™, Ne LA sindy(u) (A10)
n=0
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The sind,(u) function is .plotted in Figure Al for N=9.
Note that for u equal to integral multiples of N, the

8ind has unit magnitude; for all other integral values

«‘3”1’ TR
VR Ty,

Pt o

of u, the sind is zero, For evén N, the peaks alternate
bstween plus and minus one; for odd N all peaks: are
positive unity. The,sind&(ua is always periodic with
period 2N; the magnii. 2 (or square) is periodic with
period N.
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APPENDIX B

This appendix derives closed form expressions for

the infinite series

Sju,N)= ]  sinc(usrN) , (B1)
reE—-e
and
Sy(u,N) = E sir;ca(u+rN) (B2)
bl LY ]

that is, the sum of a periodic series of slinc(u-) functions
or thelr squares, spaced along the u axis by a distance N.

Consider first the spectrum G(f) of a function g(t)
consisting of a series of N impulses,‘ N odd, with unit
spacing and centered at t=o0 as shown in Figure Bl.

Direct computatjon of G(f) gives

a(r) = [° g(t) eI gy . (B3)

(N=1)/2 :
6te) = [~ ] s(t-n) e~I2¥I% g4 (B4)
- rm-(N-1)/2

Interchanging the order of summation and integration

9l
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BLOCK OF 2N-1 IMPULSES, TRIANGULAR WEIGHTING
FIGURE B2
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(N-1)/2 -
. 6(f) = % &(t-n) e~J27Lt 4¢ (B5)
n=-(N-1)/2 ‘ee -
. G(f) = % eJ2rin (B6)
3 .- N"l)
- n= =
Writing out the series,
/
: (N-1)- (N-2) N-1)
3 +J 21rf—2——- J,21rf——2— ~ -Joxf
y G(f) = e + e ‘ + .0 + e
' ) (B7)
; Janr(izd)
' Factoring out an e »
i ae) = Jrr(u-1) N g7IEnn (88)
, n=o
o Using A10, with u = Nf
| h
" 1‘ l
| a(r) = JMT(-1) o o=ITWN-1) Ly gana (Ne)  (B9)
o
» or
G{f) = N sindy(NF) . (B10)
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Now conslder the same function g(t), but derived as an

infinite impulse train

gr(t) = J ° &(t+n) (B11)

Nx=w

multiplied by a unit pulse of width N

1 ; el <3
p(t) =. (B12)
o ; It] >3

The spectrum of the impulse t:rain isu

ar(f) = ] s(f4r) (B13)

* r'-.‘

L4

and the spectrum of the pulse 1is

P(f) = N sinc(Nf) (B14)

The spectrum of the product is the convolution .of

G'(f) with P(f):

9l
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G(£) = [® G'(v)P(f=v)dv (B15)

6(F) = [* T &(vir) N sinc[(f-v)N]dv (B16)

Again interchanging the order of summation and integration,

G(f) = N f) J° sine[ (£-v)NIs(v+ridv (B17)

r--. - 0

or

[ _J
G(f) = N ] sinc[fN+rN] (B18)
r--.
But both B10 and Bl8 are expressions for the spectrum of

the same function g(t), and thus must be equal. Therefore,

letting Nf = u,

I ° sinc(utrN) = 5,(u,N) =sindy(u) (B19)

rPE—

To obtain the desired relation for sz(u,N), consider thg
auto-conyolution of g(t). By forming the auto-convolution
of a series of finite pulses of width & and height 1/s,
and then taking the limit as § » 0, 1t can easily be seenthat

the auto-convolution of g(t) is a series of 2N - 1 impulses
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rgz(t) with a triangular weighting as illustrated in

Figure B2, The spectrum of g,(t) 1s of course Just
the square of G(r),

6,(f) = N%sina2(nr) (B20)

But ga(t) can also be derived by multiplying the impulse

train g'(t) by a triangular pulse P, (t)

N(L +t/N); =N <t <0
Po(t) = N(L -t/N); 0.<t <N (B21)
0 WLIER

The spéctrum of p,(t) 1s .

[4

P,(f) = N% sinc?(nr) . (B22)

since the trlangular pulse is just the auto convolution of
the square pulse Bl2, and therefore has a spectrum equal to

P2(f). Convolving P,(f) with G'(f),

Go(f) = [° B (f-v)G'(v)av (B23)
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a,(f) = [° N2‘$1nca[(f-v)N] E 8 (v+r)dv (B24)

r.-.

Interchanging summation and integration,

a,(f) = ¥ [ [ sinc®[(£-v)N]s(vér)ay (B25)
rSew -*
or
G,(f) = N° T sinc?(Ne+rN) (B26)
PRaw

Equating B2l with B2T,

N2 ] sinc?(Nf + rN) = N2 sina3(nr) © (B27)

r.-~

o e, g

or, letting Nf = u,

4 e

-

. - 1 sinca(u + rN) = Sz(u.N)'sindN(u) (B28)

rn—‘
]

o7
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